
Background-Removed SoloHI Movie Process

• Developed Technique for making background-removed full-FOV SoloHI images/movies
• Procedures to be available via SolarSoft-IDL along with scripts to make process easier

• Based on using image sequences from selected time intervals for which SC & solar
arrays have not moved significantly. We call such a time intervals Sequences
• Also creating timelines & tables of such Sequences [see next slide]

• For a given Sequence, creates backgrounds for each tile using percentiles & simple
radial scaling with PSP distance from Sun. Backgrounds only good for that Sequence
• Also makes masks for Tiles 1 & 2 to cut out variable inner edge regions with stray light

• Divide image by its background to obtain background-removed image.
• Maps the 4 tiles to HelioProjective Cartesian (HPC) frame & creates pngs and movies
• Unmapped individual tile FITS images created as a by-product

P. Penteado (paulo.penteado@jpl.nasa.gov) & P. Liewer (paulett.c.liewer@jpl.nasa.gov)

1

Sample Background-Removed HPC Movie Frames

2022 March 29 05:40 UTC 2023 October 12 07:44 UTC

2

N
um

ber of Files

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec

N
um

be
r o

f F
ile

s

0

100

200

Motivation: Timeline of Tile 3 Sequences for 2023
Sequence = Time intervals for which neither SC nor solar arrays have changed orientation

Red bar span length of the sequence; Y-axis the number of files in the sequence

0

Tile 3 Sequences for 2023

Steps to Creating Background-removed images for a Sequence
Tile 2 solohimask_2.png

4

Three Major Steps for Each Sequence

1. Make Bad PIxel Map for Tiles 1&2

2. Create backgrounds for the Sequence, one for each tile

3. Make background-removed images, both single tile and full FOV

mapped images

1. Make Bad PIxel Maps* for Tiles 1&2
From Paulo’s wiki page

• Bad pixel mask is computed from statistics on all images of that tile
(1 or 2) in the sequence. These are put into a stack, which is used
in several steps, to tag as bad pixels:
• Plateaus (some have flat areas at the edges, a few pixels wide).
• Regions where the pixel value goes over a threshold above the

per-pixel median. Default is over the 97th percentile and those
over 10 standard deviations above the mean. To avoid salt-and-
pepper noise, this mask is convolved with a kernel to add any
pixels that are neighboring those over the threshold.

* Only Tiles 1&2 suffer from variable stray light from the solar arrays

Tile 1 solohimask_1.png

Tile 2 solohimask_2.png

5

Step 2. Create backgrounds for the Sequence, one for each tile
1. Read all L2 FITS files for the time range of the sequence for the current tile (L2’s are ~1k by 1k)

2. Apply normalization: dividing by Rp
2, a constant value for the whole image, correcting for distance from Sun

3. Calculate a minimum value (1% level) for each pixel over all the images in the time sequence and create an
image with this value for each pixel

4. Create the background image by filtering this image to remove occasional small problems such as dust streaks:
The top 0.5% pixels are replaced with the average of pixels around them, calculated with a 5-pixel rectangle.

5. Save background images - cache or in an IDL Index Object

6

1 2 3 4
Sample Tile Backgrounds

Step 3. Make background-removed images and maps (1/2)
Loop on each image from one of the tiles (tile 3, by default), doing:
1. Find the 3 files for the other 3 tiles closest in time to go into the same final full

FOV mapped images.
2. Apply Rp

2 normalization to the 4 images
3. Divide each image by its background
4. Apply bad pixel mask for tiles 1 and 2
5. Save the 4 resulting unprojected, background-removed, masked image as FITS

(pngs can also saved separately for each tile)

7

Background-Removed Tile Images
1 2 3 4

Step 3. Make background-removed images and maps (2/2)

6. Project each tile into the full FOV map
– so only ¼ occupied by each tile.

7. Apply cut offs (defaults are 1% to
97.5% level) on projected tiles

8. Join all 4 mapped tiles into global map
to produce one full FOV image - Joined
image saved as FITS and PNG

9. Create movie from PNGs

10. [Optional] Combine PNGs from
adjacent Sequences to make longer
movies

8

Sample Tile pngs & final mapped full FOV image

2023 September 25T01:43

Tile 2 solohimask_2.png

9

3

2

4

1

Movies to date (October 2024)

2022
solohi_20220325_20220403_T3_V31_ql.mp4 Event: 2022 March 25 CME

solohi_20220328_20220329_ T3_V31 _ql.mp4 Event: 2022 March 28 CME

2023
solohi_20230312_20230313_ T3_V31 _rel.mp4 Event: 2023 March 12 &1 3 CMEs

solohi_20230421_20230425_v30_ql.mp4 Event: 2023 April 22 & 23 CMEs
solohi_20230924_20230926_T2_V30_ql.mp4 Event: 2023 September 24 CME
solohi_20230930_20231003_v30_ql.mp4 Event: 2023 October 1 & 2
solohi_20231010_20231014_T2_v30_ql.mp4 Event: 2023 October 10 & 12

2024
solohi_20240201_20240301_T3_v31_rel.mp4 All of February 2024/ every 4th T3 frame-
 Combines Sequences

10

Sample scripts to make images and movies
1. Script to create an index of the files specified period of interest,

divided into Sequences (Solohi_build_index) – Steps 1 &2
• User inputs date range by day and path to SoloHI L2 files
• Output is an Index Object solohiindex_id packed into an IDL save file

2. Script to make the movies using saved Index Object – Step 3
• User inputs: name of save file with the Index Object solohiindex_id, time

range for movie within time span of Index object, driving tile……
• Set a few keywords, e.g., to control whether or not to save pngs and/or FITS

of individual tiles
• Output is full FOV FITS and pngs and the individual frames as FITS/ pngs
• Make pngs into a movie

11

Summary
• Have developed robust technique for making background removed

SoloHI single-tile and full FOV images/fits/movies
• Technique based on finding Sequences within user specified time

range (by day) in which which SC & solar arrays have not moved
significantly.
• A background images is created for each of the 4 tiles for each sequence

• The information for the specified time period (by days), e.g., the
sequences and all 4 backgrounds, are saved in IDL index objects
• Saved because this is a very cpu intensive process

• Create background removed images, tile and full FOV images starting
with an IDL index object for the period of interest
• The IDL Index Objects can be consider a separate data product

12

Sample scripts to make images and movies (1/2)

13

IDL commands
;Set path to SoloHI L2 files - presumably has files by day in subfolders under L2/
 L2path = '/export/solarraid1/ra/solohi/fm/rel/fits/L2/'
;Within this path, set date range for the folders that covers the time of interest
 dirrange = ['20231008','20231016']
; Give a name for the file where the index object will be saved
 fname1 = 'solohiiindex_20231010.sav'
;Create metadata for the index object
 SolohiindexA=solohi_index(fname1=fname1, root = L2path,dirrange=dirrange,verbose=2)
;Scan the directories and find the files in the specified range
 solohiindexA.scan[,nt=4] ;you probably want to use multiple threads, here
;Find sequence(s) and make & store the backgrounds and masks needed for all files
; You definitely want to use multiple threads here, but limit the number to be used
; because the default(all cores)can be too high
 solohiindexA.findsequences [,nt=4]
;Check basic information on the index object, e,g., number of files, first&last file
; & name of save file
 help, solohiindexA

First, created an IDL index object which will have all the backgrounds for all the images in a specified
range of days

Sample scripts to make images and movies (2/2)

14

IDL commands
;Restore an index object (contains a list of files, sequences and all backrounds &
masks for the specified days)
 solohiindexB=solohi_index(restore= 'solohiiindex_20231010.sav')
;Check what days are in the object
 help, solohiindexB
;Get the list of files in the object
 su=solohiindexB.summary
;Chose a tile to determine the cadence of the full FOV movie
 tile = 3 ; the default
;Specifiy time range of movie (within days of object) &find of all tile = 3 files in
that range using FITS keywords
 w=where((su.wcs.time.observ_avg ge '2023-10-10T10:00:00:00') and $
 (su.wcs.time.observ_avg le '2023-10-14T00:00:00')and(su.detector eq tile))
;Make a list of the tile=3 files
 fs=su[w].fname
;Run the pipeline: find files to go with tile=3 files, divide by backgrounds etc.*
 solohi_join_caller_p,fs=fs,root=root,nt=nt,savel2=savel2,$
 index=solohiindexB,sys='SOLO_HPC',noclobber=noclobber,l2only=l2only,/fitsfile
;Turn pngs into a movie
 pp_pngtovideo,dir=root

*savel2, sys, noclobber,l2only are various options

 Solohiindex=solohi_index(fname1=fname1, root = L2path,dirrange=dirrange,verbose=2)
; scan the directories and find the files in the specified range
 solohiindex.scan[,nt=4] ;you probably want to use multiple threads, here
; now find sequences and make & store the background images
; You definitely want to use multiple threads here, but limit the number to be used
; because the default(all cores)can be too high
 solohiindex.findsequences
; Now you can see the structure of the index object solohiindex
 help, solohiindex

Now, make the background-removed images and mapped full FOV images using a saved index object

Motivation: Timeline of Sequences for 2023 in Table Form
Intervals for which neither SC nor solar arrays have changed orientation & number files

15

NF = Number of files in the sequence
FNAME_MIN = name of first file
FNAME_MAX = name of last fo;e

